
Version Control with Git

Kaylea Nelson

research.computing@yale.edu

Version Control with Git

• What is Version Control and Git?
• Putting Your Code into Git
• Connecting Your Repository to Bitbucket
• Utilizing Your Repository’s History
• Collaboration: Merging and Conflicts

What is Version Control?
“The whole idea behind any version control system is to
store “safe” copies of a project so that you never have to
worry about irreparably breaking your code base.”

– Bitbucket.org

• Easy and powerful way to track changes to your work
• Useful for both writing (if using e.g. LaTeX) and code
• Backups of your work
• General coding safety net

What is Git? How does it work?
Git tracks changes to a file (or set of files) through a
series of snapshots called “commits” or “revisions”.

These snapshots are stored in a “repository” which
contains a history of all the changes to the files.

How is Git useful to me?

• “Why isn’t it working all of a sudden?”
• Cleaner file system (no more “code, codev2,

codev3_test, codev3_test1” directories)
• Record of your edits (and thought process!)
• Check for bugs in inconsistent results
• Unlimited and powerful “undo”
• Collaboration!

Putting Your Code into Git

Configure Git

• Global configurations for Git
$ git config --global user.name "Your Name"
$ git config --global user.email "your.email@yale.edu"

Setup Repository

• Initialize repository

This create a .git directory in your directory that contains all
the version control information. DO NOT DELETE!!!

$ git init

$ ls -a
. .. .git

Add Existing Files to Repository

• The Git repository can be initialized before or
after you create any files. To version control
existing files, just add them to the repository.

$ git add myplot.py

Check Status of Repository

$ git status
On branch master

Initial commit

Changes to be committed:
(use "git rm --cached <file>..." to unstage)

new file: myplot.py

Untracked files:
(use "git add <file>..." to include in what will

be committed)

myfigure.png

Make Initial Commit

• Now we want to permanently save the
changes to repository, an action called
“committing”
$ git commit –m "initial commit"

Leaving Files Out of Repository

• You don’t want to add every file to your
repository. The good rule of thumb is to
exclude files if they are a product of your
code. Examples of files to exclude:
– Image files
– PDFs
– Compiled code (including .o or .pyc files)
– System files (e.g., .DS_Store)

Automate Exclusions
• To easily automate exclusions, create a

.gitignore file.

• Now these files won’t show up as “untracked” in
the git status command and can’t accidentally
get added to the repository

$ cat .gitignaore
.DS_Store
*.png
*.pyc

$ git add .gitignore
$ git commit –m "added .gitignore"

Make Changes!

• Make changes to the file and then check on
the repository
$ git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be

committed)
(use "git checkout -- <file>..." to discard

changes in working directory)

modified: myplot.py

no changes added to commit (use "git add" and/or
"git commit -a")

Make Changes!

• Add and commit your changes

$ git add myplot.py
$ git commit -m "increased frequency"
[master 21e2dd2] increased frequency
1 file changed, 1 insertion(+), 1 deletion(-)

Review Changes

• You can check to see what has been modified
before adding files using git diff
$ git diff
diff --git a/myplot.py b/myplot.py
index 3c179cc..3eb9a45 100644
--- a/myplot.py
+++ b/myplot.py
@@ -2,7 +2,7 @@ import matplotlib.pyplot as plt
import numpy as np

t = np.arange(0.0, 2.0, 0.01)
-s = np.sin(2*np.pi*t)
+s = np.sin(4*np.pi*t)

plt.plot(t, s)
plt.xlabel('time (s)')

Review Changes

• You can check to see what has been modified
before committing using git diff --staged
$ git diff --staged
diff --git a/myplot.py b/myplot.py
index 3c179cc..3eb9a45 100644
--- a/myplot.py
+++ b/myplot.py
@@ -2,7 +2,7 @@ import matplotlib.pyplot as plt
import numpy as np

t = np.arange(0.0, 2.0, 0.01)
-s = np.sin(2*np.pi*t)
+s = np.sin(4*np.pi*t)

plt.plot(t, s)
plt.xlabel('time (s)')

Writing a Good Commit Message

• The commit message should be a high level
explanation of the change
– Don’t be too brief
– Also, don’t exactly quote the change

• Example:
– Bad: “Changes”
– Bad: “Changed line 178 in plot_bM_vs_t.py”
– Better: “Change color of pressure line to red”

• Most important question: If you are looking at
this message in 6 months, is it going to make
sense and be useful?

Other Useful Commands

• Rename or move a file in the repository

• Delete a file from the repository
$ git mv <old_filename> <new_filename>

$ git rm <filename>

Connecting Your Repository to Github

1. Create repository on your online account
2. Follow included instructions to get your local

repository connected to your remote
repository

3. Push committed changes to the remote
repository
…
$ git commit -m "<message>"
$ git push

Create a New Repository on Github

Create a New Repository on Github

Follow the Instruction to Push

Push Future Commits

• After the initial “push” to the remote
repository, just remember to push any new
commits and you will have easy remote
backups of your work!

…
$ git commit -m "<message>"
$ git push

Remote Repository Hosts Options

• github.com – unlimited free public and private
repos for everyone

• Bitbucket.org – unlimited repos [but be
careful signing up with yale.edu email]

• git.yale.edu – free fully featured accounts.
Only available on Yale network or VPN and
with Yale netid

Utilizing Your Repository’s History

Review History

• You can see a history of all recent commits
– Detailed Log:

– Simplified Log

$ git log
$ git log -1

$ git log --oneline
$ git log --oneline --graph --decorate

Compare Revisions

• You can compare two revisions to see what
changes were made with git diff
$ git diff HEAD 0c7aa71
diff --git a/myplot.py b/myplot.py
index 3c179cc..3eb9a45 100644
--- a/myplot.py
+++ b/myplot.py
@@ -2,7 +2,7 @@ import matplotlib.pyplot as plt
import numpy as np

t = np.arange(0.0, 2.0, 0.01)
-s = np.sin(2*np.pi*t)
+s = np.sin(4*np.pi*t)

plt.plot(t, s)
plt.xlabel('time (s)')

Review History

• The interfaces on Github and Bitbucket are
also great for exploring the commit history
and tracking changes

Checkout Previous Commits

Checkout Previous Commits

• After, you have identified the revision you
need to revert to, “checkout” that revision

• Or just a specific file from that revision

Warning: If you checkout from an old revision,
any uncommitted changes to the project will be
lost.

$ git checkout <revision>

$ git checkout <revision> <filename>

Throwaway All New Changes

• Revert your working directory to the last
commit

Warning: Any uncommitted changes to the
project will be lost.

$ git reset --hard

Getting Your Code in a New Location

• If you have a remote repository, you can
“clone” it to a new location to continue your
work (e.g., copying code to the cluster,
recovering your code to a new laptop)

$ git clone
https://kayleanelson@github.com/kayleanelson/my_latest
_work.git

Collaboration

• Once your work is in a remote repository, it is
very easy to being to collaborate with others
– Git has a sophisticated system for managing

multiple people editing the same code base
through “merging”

• Usage Examples
– Multiple collaborators on a code
– LaTeX papers!

Sharing Your Repository

Basic Collaborative Workflow

• Pull down new commits
• Make your edits
• Add your modified files and commit
• Push commits to remote

$ git pull
…
$ git add <files>
$ git commit –m <message>
$ git push

Merging

Conflicts

• Inevitably, you and your collaborator will
commit overlapping changes to a file. This will
create a “merge conflict”.

Kaylea Nelson

Resolving Conflicts

• Pull in commits and Oops!
$ git pull
Auto-merging myplot.py
CONFLICT (content): Merge conflict in myplot.py
Automatic merge failed; fix conflicts and then
commit the result.

Resolving Conflicts
• Git marks the conflicted line in the file

• Manually merge the code in a text editor and
commit the changes

$ cat myplot.py
import matplotlib.pyplot as plt
import numpy as np

t = np.arange(0.0, 2.0, 0.01)
<<<<<<< HEAD
s = np.sin(3*np.pi*t)
=======
s = np.sin(4*np.pi*t)
>>>>>>> 7232b521f34cf3deed50f4d8aac6260616683ddf

Uncommitted Conflicts

• Git will also complain if you pull in changes to
a file you have modified but not committed.
You have two options.
– Undo the changes to the file back to last

committed revision by checking it out from the
HEAD

– Commit your changes and then redo the pull (and
potentially merge the changes, if applicable)

$ git checkout -- <filename>

Questions?

To summarize, add 3 commands to your daily
workflow for unlimited undo and online backups
of your code!

$ git add <files>
$ git commit –m <message>
$ git push

Even more information:

• Great in depth tutorials on all things git:
– try.github.io
– https://play.instruqt.com/public/topics/getting-

started-with-git
• Software Carpentry (thanks for the images!)
– https://swcarpentry.github.io/git-novice/01-

basics/
• Contact us: research.computing@yale.edu

https://swcarpentry.github.io/git-novice/01-basics/

