
Python Notebook

January 26, 2017

#
Introduction to Python
##
Stephen Weston and Robert Bjornson
##
Yale Center for Research Computing
##
Jan 2017

0.1 What is the Yale Center for Research Computing?

• Independent center under the Provost’s office
• Created to support your research computing needs
• Focus is on high performance computing and storage
• ~15 staff, including applications specialists and system engineers
• Available to consult with and educate users
• Manage compute clusters and support users
• Located at 160 St. Ronan st, at the corner of Edwards and St. Ronan
• http://research.computing.yale.edu

0.2 Why Python?

• Free, portable, easy to learn
• Wildly popular, huge and growing community
• Intuitive, natural syntax
• Ideal for rapid prototyping but also for large applications
• Very efficient to write, reasonably efficient to run as is
• Can be very efficient (numpy, cython, . . .)
• Huge number of packages (modules)

0.3 You can use Python to. . .

• Convert or filter files
• Automate repetitive tasks
• Compute statistics
• Build processing pipelines
• Build simple web applications

1

• Perform large numerical computations
• . . .

You can use Python instead of bash, Java, or C
Python can be run interactively or as a program

0.4 Different ways to run Python

1. Create a file using editor, then:

$ python myscript.py

1. Run interpreter interactively

$ python

1. Use a python environment, e.g. Anaconda

0.5 Python 2 versus 3

• Two major versions of python in use
• For beginners, almost the same, major difference is print
• This tutorial uses python 3

see https://wiki.python.org/moin/Python2orPython3

0.6 Basic Python Types

In []: radius=2
pi=3.14
diam=radius*2
area=pi*(radius**2)
title="fun with strings"
pi="cherry"
longnum=31415926535897932384626433832795028841971693993751058\
2097494459230781640628620899862803482534211706798214808651
delicious=True

• variables do not need to be declared or typed
• integers and floating points can be used together
• the same variable can hold different types
• lines can be broken using

• python supports arbitrary length integer numbers

In []: print (2.0==2)

2

0.7 Other Python Types: lists

Lists are like arrays in other languages.

In []: l=[1,2,3,4,5,6,7,8,9,10]
l[5]

In []: l

In []: l[5:7]

In []: l[5:-3]

In []: l[2]=3.14
l[3]="pi"
l

In []: len(l[4:8])

0.8 Lists are more flexible than arrays, e.g.:

• Insert or append new elements
• remove elements
• nest lists
• combine values of different types into lists

In []: l=[1,2,3,4,5,6,7,8,9]
l[2]=[11,12,13]
l

In []: l[3:6]=['four to six']
l

0.9 Other Python Types: tuples

tuples are like lists, but not modifiable

In []: t=(1,2,3,4,5,6,7,8,9)
t

In []: t[4:6]

In []: t[5]=99

0.10 Other Python Types: strings

Strings are fully featured types in python.

• strings are defined with ’ or "
• strings cannot be modified
• strings can be concatenated and sliced much like lists

3

• strings are objects with lots of useful methods

In []: s="Donald Duck"
s

In []: s="int\"s"
print(s)

In []: s[0]='Cl'

In []: s.upper()

0.11 Other Python Types: dictionaries

Dicts are what python calls “hash tables”

• dicts associate keys with values, which can be of (almost) any type
• dicts have length, but are not ordered
• looking up values in dicts is very fast, even if the dict is BIG.

In []: coins={'penny':1, 'nickle':5, 'dime':10, 'quarter':25}
coins['dime']

In []: coins['dime']

In []: sorted(coins.keys())

0.12 Control Flow Statements: if

• if statements allow you to do a test, and do something based on the result
• else is optional

In []: import random
v=random.randint(0,100)
if v < 50:

print ("small", v)
print ("another line")

else:
print ("big", v)

print ("after else")

0.13 Control Flow Statements: while

• While statements execute one or more statements repeatedly until the test is false

In []: import random
count=0
while count<100:

count=count+random.randint(0,10)
print (count)

4

0.14 Control Flow Statements: for

For statements take some sort of iterable object and loop once for every value.

In []: for fruit in ['apple', 'orange', 'banana']:
print(fruit)

In []: for i in range(3,7):
print(i)

0.15 Using for loops and dicts

If you loop over a dict, you’ll get just keys. Use items() for keys and values.

In []: for denom in coins:
print (denom)

In []: for denom, value in coins.items():
print (denom, value)

0.16 Control Flow Statements: altering loops

While and For loops can skip steps (continue) or terminate early (break).

In []: for i in range(10):
if i%2 != 0: continue
print (i)

In []: for i in range(10):
if i>5: break
print (i)

0.17 Note on code blocks

In the previous example:

In []: for i in range(10):
if i>5: break
print (i)

How did we know that print(i) was part of the loop? What defines a loop?
Many programming languages use { } or Begin End to delineate blocks of code to treat as a

single unit.
Python uses white space (blanks). To define a block of code, indent the block to the same level.
By convention and for readability, indent a consistent number, usually 3 or 4 spaces. Many

editors will do this for you.

5

0.18 Functions

Functions allow you to write code once and use it many times.
Functions also hide details so code is more understandable.

In []: def area(w, h):
return w*h

area(6, 10)

0.19 Summary of basic elements of Python

• 4 basic types: int, float, boolean, string
• 3 complex types: list, dict, tuple
• 4 control constructs: if, while, for, def

0.20 Example 1: File Reformatter

Task: given a file of hundreds or thousands of lines:

FCID,Lane,Sample_ID,SampleRef,index,Description,Control,Recipe,...
160212,1,A1,human,TAAGGCGA-TAGATCGC,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A2,human,CGTACTAG-CTCTCTAT,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A3,human,AGGCAGAA-TATCCTCT,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A4,human,TCCTGAGC-AGAGTAGA,None,N,Eland-rna,Mei,Jon_mix10
...

Remove the last 3 letters from the 5th column:

FCID,Lane,Sample_ID,SampleRef,index,Description,Control,Recipe,...
160212,1,A1,human,TAAGGCGA-TAGAT,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A2,human,CGTACTAG-CTCTC,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A3,human,AGGCAGAA-TATCC,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A4,human,TCCTGAGC-AGAGT,None,N,Eland-rna,Mei,Jon_mix10
...

In tnis example, we’ll show: - reading lines of a file - parsing and modifying the lines - writing
them back out - creating a script to do the above and running it - passing the script the file to
modify

0.21 In pseudocode

open the input file
read the first header line, and print it out
for each remaining line in the file

read the line
find the value in the 5th column
truncate it by removing the last three letters
put the line back together
print it out

6

0.22 Step 1: open the input file

In []: sys
fp=open('badfile.txt')

In []: fp

Open takes a filename, and returns a “file pointer”.
We’ll use that to read from the file.

0.23 Step 2: read the first header line, and print it out

In []: import sys
fp=open('badfile.txt')
print (fp.readline().strip())

We’ll call readline() on the file pointer to get a single line from the file. (the header line).
Strip() removes the return at the end of the line.
Then we print it.

0.24 Step 3: for each remaining line in the file, read the line

In []: import sys
fp=open('badfile.txt')
print (fp.readline().strip())
for l in fp:
print(l)

A file pointer is an example of an iterator.
Instead of explicitly calling readline() for each line, we can just loop on the file pointer, getting

one line each time.
Since we already read the header, we won’t get that line.

0.25 Step 4: find the value in the 5th column, and remove last 3 letters

In []: import sys
fp=open('badfile.txt')
print (fp.readline().strip())
for l in fp:

flds=l.strip().split(',')
flds[4]=flds[4][:-3]
print(flds)

Like before, we strip the return from the line.
We split it into individual elements where we find commas.
The 5th field is referenced by flds[4], since python starts indexing with 0. [:-3] takes all charac-

ters of the string until the last 3.

7

0.26 Step 5: put the line back together, and print it

In []: import sys
fp=open('badfile.txt')
print (fp.readline().strip())
for l in fp:

flds=l.strip().split(',')
flds[4]=flds[4][:-3]
print (','.join(flds))

Join takes a list of strings, and combines them into one string using the string provided. Then
we just print that string.

We would invoke it like this:

$ python fixfile.py badfile.txt

$ python fixfile.py badfile.txt > fixedfile.txt

0.27 Variations for you to try

1. modify to accept multiple input files and combine them into one fixed file
2. modify to accept the name of an output file and write the output to that file

0.28 Example 2: directory walk with file ops

Imagine you have a directory tree with many subdirectories.
In those directories are files named *.fastq. You want to:

• find them
• compress them to fastq.qp using a program
• delete them if the conversion was successful

In this example, we’ll demonstrate:

• traversing an entire directory tree
• executing a program on files in that tree
• testing for successful program execution

In psuedocode

for each directory
get a list of files in that directory
for each file in that directory

if that file's name ends with .fastq
create a new file name with .gz added
create a command to do the compression
run that command and check for success
if success

delete the original
else

stop

The conversion command is: gzip -c file.fastq > file.fastq.gz

8

0.29 Step 1: directory traversal

We need a way to traverse all the files and directories. os.walk(dir) starts at dir and visits
every subdirectory below it. It returns a list of files and subdirectories at each subdirectory.

For example, imagine we have the following dirs and files:

Ex2dir
Ex2dir/d1
Ex2dir/d1/d2
Ex2dir/d1/d2/f2.fastq
Ex2dir/d1/f1.fastq

In []: import os
for d , dirs, files in os.walk('Ex2dir'):

print (d, dirs, files)

0.30 Step 2: Invoking other programs from python

The subprocess module has a variety of ways to do this. A simple one:

import subprocess

ret=subprocess.call(cmd, shell=True)

ret is 0 on success, non-zero error code on failure.

In []: import subprocess
ret=subprocess.call('gzip -c myfile.fastq > myfile.fastq.gz', shell=True)
ret

0.31 Put it all together

In []: import os, sys, subprocess
sys.argv=['dummy', 'Ex2dir'] # for Jupyter we'll cheat
start=sys.argv[1]
for d, subdirs, files in os.walk(start):

for f in files:
if f.endswith('.fastq'):

fn=d+'/'+f
nfn=fn.replace('.fastq', '.fastq.gz')
cmd='gzip -c '+fn+' > '+nfn
print ("running", cmd)
ret=subprocess.call(cmd, shell=True)
if ret==0:

if os.path.exists(nfn):
os.remove(fn)

else:
print ("Failed on ", fn)
sys.exit(1)

9

0.32 Example 3: Nested Dictionaries

Dictionaries associate names with data, and allow quick retrieval by name.
By nesting dictionaries, powerful lookups are fast and easy.
In this example, we’ll: - create a dict containing objects - load the objects with search data - use

the dict to retrieve the appropriate object for a search - perform the search
genes.txt describes the locations of genes:
(name, chrom, strand, start, end)

uc001aaa.3 chr1 + 11873 14409
uc010nxr.1 chr1 + 11873 14409
uc010nxq.1 chr1 + 11873 14409
uc009vis.3 chr1 - 14361 16765
uc009vit.3 chr1 - 14361 19759
...

mappedreads.txt describes mapped dna sequences
(name, chrom, position, sequence)

seq1 chr1 674540 ATCTGTGCAGAGGAGAACGCAGCTCCGCCCTCGCGGT
seq2 chr19 575000 AGAGGAGAACGCAGCTCCGCCCTCGCGGTGCTCTCCG
seq3 chr5 441682 TCTGCATCTGCTCTGGTGTCTTCTGCCATATCACTGC
...

We’d like to be able to quickly determine the genes overlapped by a dna sequence.
First, we need a simple way to determine if two intervals overlap.
intervaltree is a python module that makes that easy.

In []: from intervaltree import IntervalTree
it=IntervalTree()
it[4:7]='gene1'
it[5:10]='gene2'
it[1:11]='gene3'
it

In []: it[3:5]

0.33 General plan

• use interval trees, one for each chromosome
• organize the trees in a dictionary by chromosome
• store an interval for each gene the tree for it’s chromosome

{'chr1': IntervalTree([Interval(1000, 1100, 'GeneA'),
Interval(2000, 2100, 'GeneB'), ...

'chr2': IntervalTree([Interval(4000, 5100, 'GeneC'),
Interval(7000, 8100, 'GeneD'), ...

'chr3':
...

10

In psuedocode ### setup the lookup table create empty dict open the gene
file for each line in the file get gene name, chrom, start, end
initialize an intervaltree for the chrom, if needed, and add to dict
add the interval and gene name to the interval tree

In []: import sys
from intervaltree import IntervalTree

print("initializing table")
table={}
sys.argv=['dummy', 'genes.txt', 'mappedreads.txt'] # for Jupyter
for line in open(sys.argv[1]):

genename, chrm, strand, start, end = line.split()
if not chrm in table:

table[chrm]=IntervalTree()
table[chrm][int(start):int(end)]=genename

print("done")

In []: table['chr1'][670000]

0.34 use the interval trees to find overlapped genes

open the dna sequence file for each line in the file: get chrom,
mapped position, and dna sequence look up the interval tree for
that chrom in the dict search the interval tree for overlaps [pos,
pos+len] print out the gene names

In []: print("reading sequences")

for line in open(sys.argv[2]):
name, chrm, pos, seq = line.strip().split()
genes=table[chrm][int(pos):int(pos)+len(seq)]
if genes:

print(name, chrm, pos, seq)
for gene in genes:

print ('\t',gene.data)

0.35 Python Resources we like

• Introducing Python, Bill Lubanovic, O’Reilly
• Python in a Nutshell, Alex Martelli, O’Reilly
• Python Cookbook, Alex Martelli, O’Reilly
• Google’s python class: https://www.youtube.com/watch?v=tKTZoB2Vjukxo
• https://docs.python.org/3.5/tutorial

0.36 To get help or report problems

• Check our status page: http://research.computing.yale.edu/system-status
• Send an email to our tracking system: hpc@yale.edu

11

• Read documentation: http://research.computing.yale.edu/hpc-support
• Office hours: http://research.computing.yale.edu/hpc-support/office-hours-support
• Email us directly:
• Stephen.weston@yale.edu
• Robert.bjornson@yale.edu

12

	What is the Yale Center for Research Computing?
	Why Python?
	You can use Python to…
	Different ways to run Python
	Python 2 versus 3
	Basic Python Types
	Other Python Types: lists
	Lists are more flexible than arrays, e.g.:
	Other Python Types: tuples
	Other Python Types: strings
	Other Python Types: dictionaries
	Control Flow Statements: if
	Control Flow Statements: while
	Control Flow Statements: for
	Using for loops and dicts
	Control Flow Statements: altering loops
	Note on code blocks
	Functions
	Summary of basic elements of Python
	Example 1: File Reformatter
	In pseudocode
	Step 1: open the input file
	Step 2: read the first header line, and print it out
	Step 3: for each remaining line in the file, read the line
	Step 4: find the value in the 5th column, and remove last 3 letters
	Step 5: put the line back together, and print it
	Variations for you to try
	Example 2: directory walk with file ops
	Step 1: directory traversal
	Step 2: Invoking other programs from python
	Put it all together
	Example 3: Nested Dictionaries
	General plan
	use the interval trees to find overlapped genes
	Python Resources we like
	To get help or report problems

