
Introduction to Python

Stephen Weston Robert Bjornson

Yale Center for Research Computing
Yale University

July 2016

What is the Yale Center for Research Computing?

Specifically created to support your research computing needs

˜15 staff, including applications specialists and system engineers

Available to consult with and educate users

Manage compute clusters and support users

Located at 160 St. Ronan st, at the corner of Edwards and St. Ronan

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 2 / 45

Why Python?

Free, portable, easy to learn

Wildly popular, huge and growing community

Intuitive, natural syntax

Ideal for rapid prototyping but also for large applications

Very efficient to write, reasonably efficient to run

Numerous extensions (modules)

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 3 / 45

You can use Python to...

Convert or filter files

Automate repetitive tasks

Compute statistics

Build processing pipelines

Build simple web applications

Perform large numerical computations

...

You can use Python instead of bash, Java, or C

Python can be run interactively or as a program

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 4 / 45

Running Python

Create a file using editor, then:
$ python myscript.py

Run interpreter interactively
$ python

Use a python environment, e.g. Anaconda

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 5 / 45

Overview of topics

Some python data types and control statements

Examples of python in action

The Anaconda python environment

Numerical computation in python

Resources

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 6 / 45

Basic Python Types and Assignment

>>> radius=2
>>> pi=3.14
>>> diam=radius*2
>>> area=pi*(radius**2)
>>> title="fun with strings"
>>> pi="cherry"
>>> longnum=31415926535897932384626433832795028841971693993751058\
2097494459230781640628620899862803482534211706798214808651
>>> delicious=True

variables do not need to be declared or typed

integers and floating points can be used together

the same variable can hold different types

lines can be broken using \
python supports arbitrary length integer numbers

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 7 / 45

Other Python Types: lists

Lists are like arrays in other languages.

>>> l=[1,2,3,4,5,6,7,8,9,10]
>>> l[5]
6
>>> l[3:5]
[4, 5]
>>> l[5:]
[6, 7, 8, 9, 10]
>>> l[5:-3]
[6, 7]
>>> l[2]=3.145
>>> l[3]="pi"
>>> l
[1, 2, 3.145, ’pi’, 5, 6, 7, 8, 9, 10]
>>> len(l)
10

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 8 / 45

Lists continued

Lists are more flexible than arrays, e.g.:

Insert or append new elements

remove elements

nest lists

combine values of different types into lists

>>> l=[1,2,3,4,5,6,7,8,9]
>>> l+[11,12,13]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13]
>>> l[3:6]=[’three to six’]
>>> l
[1, 2, 3, ’three to six’, 7, 8, 9]

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 9 / 45

Tuples

Tuples are similar to lists, but cannot be modified.

>>> t=(1,2,3,4,5,6,7,8,9)
>>> t[4:6]
(5, 6)
>>> t[6]="changeme"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: ’tuple’ object does not support item assignment
>>> t.append(’more’)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: ’tuple’ object has no attribute ’append’

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 10 / 45

Other Python Types: strings
Strings are fully featured types in python.

>>> s="Donald"
>>> s[0:3]
’Don’
>>> s+" Duck"
’Donald Duck’
>>> s[0]="R"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: ’s’ object does not support item assignment
>>> len(s)
6
>>> s.upper()
’DONALD’

Note:

strings cannot be modified
strings can be concatenated and sliced much like lists
strings are objects with lots of useful methods

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 11 / 45

Other Python Types: dictionaries
Dicts are like hash tables in other languages.

>>> coins={’penny’:1, ’nickle’:5, ’dime’:10, ’quarter’:25}
>>> coins[’penny’]
1
>>> coins.keys()
[’quarter’, ’nickle’, ’penny’, ’dime’]
>>> coins.values()
[25, 5, 1, 10]
>>> coins[’half’]=50
>>> coins
{’quarter’: 25, ’nickle’: 5, ’penny’: 1, ’half’: 50, ’dime’: 10}
>>> len(coins)
5

Note:

dicts associate keys with values, which can be of (almost) any type

dicts have length, but are not ordered

looking up values in dicts is very fast, even if the dict is BIG.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 12 / 45

Control Flow Statements: if

If statements allow you to do a test, and do something based on the result:

>>> import random
>>> v=random.randint(0,100)
>>> if v < 50:
... print ’got a little one’, v
... else:
... print ’got a big one’, v
...
got a big one 93

Note that the else clause is optional.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 13 / 45

Control Flow Statements: while

While statements execute one or more statements repeatedly until the test is false:

>>> import random
>>> count=0
>>> while count<100:
... count=count+random.randint(0,10)
... print count,
...
5 11 19 19 21 28 35 37 47 53 53 57 58 59 60 66 71
75 82 86 94 101

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 14 / 45

Control Flow Statements: for

For statements take some sort of iterable object and loop once for every value.

>>> for fruit in [’apple’, ’orange’, ’banana’]:
... print fruit,
...
apple orange banana
>>> for i in range(5):
... print i,
...
0 1 2 3 4

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 15 / 45

Using for loops and dicts

If you loop over a dict, you’ll get just keys. Use iteritems() for keys and values.

>>> for denom in coins: print denom
...
quarter
nickle
penny
dime
>>> for denom, value in coins.iteritems(): print denom, value
...
quarter 25
nickle 5
penny 1
dime 10

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 16 / 45

Control Flow Statements: altering loops

While and For loops can skip steps (continue) or terminate early (break).

>>> for i in range(10):
... if i%2 != 0: continue
... print i,
...
0 2 4 6 8
>>> for i in range(10):
... if i>5: break
... print i,
...
0 1 2 3 4 5

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 17 / 45

Note on blocks of code

In the previous example:

>>> for i in range(10):
... if i>5: break
... print i,

How did we know that print i was part of the loop?

Many programming languages use { } or Begin End to delineate blocks of code to
treat as a single unit.

Python uses white space (blanks). To define a block of code, indent the block.

By convention and for readability, indent a consistent number, usually 3 or 4
spaces. Many editors will do this for you.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 18 / 45

Functions

Functions allow you to write code once and use it many times.

Functions also hide details so code is more understandable.

>>> def area(w, h):
... return w*h

>>> area(3, 4)
12
>>> area(5, 10)
50

Some languages differentiate between functions and procedures. In python,
everything is a function. Procedures are functions that return no values.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 19 / 45

Summary

4 basic types: int, float, boolean, string

3 complex types: list, dict, tuple

4 control constructs: if, while, for, def

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 20 / 45

File Formatter example

Task: given a file of hundreds or thousands of lines:

FCID,Lane,Sample_ID,SampleRef,index,Description,Control,Recipe,...
160212,1,A1,human,TAAGGCGA-TAGATCGC,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A2,human,CGTACTAG-CTCTCTAT,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A3,human,AGGCAGAA-TATCCTCT,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A4,human,TCCTGAGC-AGAGTAGA,None,N,Eland-rna,Mei,Jon_mix10
...

Remove the last 3 letters from the 5th column:

FCID,Lane,Sample_ID,SampleRef,index,Description,Control,Recipe,...
160212,1,A1,human,TAAGGCGA-TAGAT,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A2,human,CGTACTAG-CTCTC,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A3,human,AGGCAGAA-TATCC,None,N,Eland-rna,Mei,Jon_mix10
160212,1,A4,human,TCCTGAGC-AGAGT,None,N,Eland-rna,Mei,Jon_mix10
...

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 21 / 45

File Formatter example (cont)

In pseudocode we might write:

open the input file
read the first header line, and print it out
for each remaining line in the file

read the line
find the value in the 5th column
truncate it by removing the last three letters
put the line back together
print it out

In Python:

import sys
fp=open(sys.argv[1])
print fp.readline().strip()
for l in fp:

flds=l.strip().split(’,’)
flds[4]=flds[4][:-3]
print ’,’.join(flds)

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 22 / 45

File Formatter example (cont)

open the input file

import sys
fp=open(sys.argv[1])

Sys is a system module with a number of useful methods.

sys.argv() returns the command line as an array of strings.

sys.argv[0] is the command, sys.argv[1] is the first argument, etc.

Open takes a filename, and returns a “file pointer”.

We’ll use that to read from the file.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 23 / 45

File Formatter example (cont)

read the first header line, and print it out

print fp.readline().strip()

We’ll call readline() on the file pointer to get a single line from the file. (the
header line).

Strip() removes the return at the end of the line.

Then we print it.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 24 / 45

File Formatter example (cont)

for each remaining line in the file
read the line

for l in fp:
...

A file pointer is an example of an iterator.

Instead of explicitly calling readline() for each line, we can just loop on the file
pointer, getting one line each time.

Since we already read the header, we won’t get that line.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 25 / 45

File Formatter example (cont)

find the value in the 5th column
truncate it by removing the last three letters

flds=l.strip().split(’,’)
flds[4]=flds[4][:-3]

Just like before, we strip the return from the line.

We split it into individual elements where we find commas.

The 5th field is referenced by flds[4], since python starts indexing with 0. [:-3]
takes all characters of the string until the last 3.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 26 / 45

File Formatter example (cont)

put the line back together
print it out

print ’,’.join(flds)

Join takes a list of strings, and combines them into one string using the string
provided. Then we just print that string.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 27 / 45

File Formatter example (cont)

Reviewing:

import sys
fp=open(sys.argv[1])
print fp.readline().strip()
for l in fp:

flds=l.strip().split(’,’)
flds[4]=flds[4][:-3]
print ’,’.join(flds)

We would invoke it like this:

$ python fixfile.py badfile.txt

$ python fixfile.py badfile.txt > fixedfile.txt

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 28 / 45

Some variations on the theme

We could skip certain lines (with other than human in the 3rd column)

We could also specify the output file on the command line

import sys
fp=open(sys.argv[1])
ofp=open(sys.argv[2], ’w’)
print >> ofp, fp.readline().strip()
for l in fp:

flds=l.strip().split(’,’)
if flds[3] != ’human’: continue
flds[4]=flds[4][:-3]
print >> ofp, ’,’.join(flds)

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 29 / 45

Some variations on the theme

We could operate on multiple input files

$ python fixfile.py badfile1.txt badfile2.txt badfile3.txt > fixedfile.txt

import sys
wrotehdr=False
for f in sys.argv[1:]:

fp=open(f)
hdr=fp.readline().strip()
if not wrotehdr:

print hdr
wrotehdr=True

for l in fp:
flds=l.strip().split(’,’)
flds[4]=flds[4][:-3]
print ’,’.join(flds)

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 30 / 45

Directory Walk Example

Imagine you have a directory tree with many subdirectories.

In those directories are files named *.fastq. You want to:

find them

compress them to fastq.qp using a program

delete them if the conversion was successful

In this example, we’ll demonstrate:

traversing an entire directory tree

executing a program on files in that tree

testing for successful program execution

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 31 / 45

Directory walk example (cont)

In pseudocode we might write:

for each directory
get a list of files in that directory
for each file in that directory
if that file’s name ends with .fastq
create a new file name with .qp added
create a command to do the compression
run that command and check for success
if success
delete the original

else
stop

The conversion command is: quip -c file.fastq >file.fastq.qp

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 32 / 45

Using os.walk

We need a way to traverse all the files and directories. os.walk(dir) starts at dir
and visits every subdirectory below it. It returns a list of files and subdirectories at
each subdirectory.

For example, imagine we have the following dirs and files:

d1
d1/d2
d1/d2/f2.txt
d1/f1.txt

This is how we use os.walk:

>>> import os
>>> for d, dirs, files in os.walk(’d1’):
... print d, dirs, files
...
d1 [’d2’] [’f1.txt’]
d1/d2 [] [’f2.txt’]

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 33 / 45

Invoking programs from python

The subprocess module has a variety of ways to do this.

A very simple use is:

import subprocess

ret=subprocess.call(cmd, shell=True)

ret=subprocess.call(’quip -c myfile.fastq > myfile.fastq.qp’, shell=True)

ret is 0 on success, non-zero error code on failure.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 34 / 45

Directory Walk Example (cont)

import os, sys, subprocess
start=sys.argv[1]
for d, subdirs, files in os.walk(start):

for f in files:
if f.endswith(’.fastq’):

fn=d+’/’+f
nfn=fn.replace(’.fastq’, ’.fastq.qp’)
cmd=’quip -c ’+fn+’ > ’+nfn
ret=subprocess.call(cmd, shell=True)
if ret==0:

if os.path.exists(nfn):
os.remove(fn)

else:
print "Failed on ", fn
sys.exit(1)

To run it, we’d do: $ python walk.py d1

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 35 / 45

Dictionary Example

Dictionaries associate names with data, and allow quick retrieval by name.

By nesting dictionaries, powerful lookups are easy.

In this example, we’ll:

create a dict containing objects

load the objects with search data

use the dict to retrieve the appropriate object for a search

perform the search

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 36 / 45

Dictionary Example (cont)

We have a file describing the locations of genes:

uc001aaa.3 chr1 + 11873 14409 11873 11873 3 11873,12612,13220, 12227,12721,14409, uc001aaa.3

uc010nxr.1 chr1 + 11873 14409 11873 11873 3 11873,12645,13220, 12227,12697,14409, uc010nxr.1

uc010nxq.1 chr1 + 11873 14409 12189 13639 3 11873,12594,13402, 12227,12721,14409, B7ZGX9 uc010nxq.1

uc009vis.3 chr1 - 14361 16765 14361 14361 4 14361,14969,15795,16606, 14829,15038,15942,16765, uc009vis.3

uc009vit.3 chr1 - 14361 19759 14361 14361 9 14361,14969,15795,16606,16857,17232,17914,18267,18912, 14829,15038,15947,16765,17055,17742,18061,18366,19759, uc009vit.3

...

We have another file with dna sequences, and where they mapped:

HWI-ST830:206:D2411ACXX:1:1114:6515:89952 401 chr1 10536 0 76M = 222691803 222681343 TACCACCGAAATCTGTGCAGAGGAGAACGCAGCTCCGCCCTCGCGGT

GCTCTCCGGGTCTGTGCTGAGGAGAACGC ##B<2DDDDDDDCCDCC@CC@C@282BBCCDDBDDFHIJJJIGJIIGIGFIGJJIJJJJJJJJHGGHHFFFFDCC@ XA:i:1 MD:Z:24C51 NM:i:1 XP:Z:chr1 222691803 76M NH:i:6CC:Z:= CP:i:10536 HI:i:0

HWI-ST830:206:D2411ACXX:1:1114:6515:89952 177 chr1 10536 0 76M chr3 197908818 0 TACCACCGAAATCTGTGCAGAGGAGAACGCAGCTCCGCCCTCGCGGTGCTCTCCG

GGTCTGTGCTGAGGAGAACGC ##B<2DDDDDDDCCDCC@CC@C@282BBCCDDBDDFHIJJJIGJIIGIGFIGJJIJJJJJJJJHGGHHFFFFDCC@ XA:i:1 MD:Z:24C51 NM:i:1 XP:Z:chr3 197908818 76M NH:i:6 CC:Z:=CP:i:10536 HI:i:1

HWI-ST830:206:D2411ACXX:1:1114:6515:89952 401 chr1 10536 0 76M chr4 120370019 0 TACCACCGAAATCTGTGCAGAGGAGAACGCAGCTCCGCCCTCGCGGTGCTCTCCG

GGTCTGTGCTGAGGAGAACGC ##B<2DDDDDDDCCDCC@CC@C@282BBCCDDBDDFHIJJJIGJIIGIGFIGJJIJJJJJJJJHGGHHFFFFDCC@ XA:i:1 MD:Z:24C51 NM:i:1 XP:Z:chr4 120370019 76M NH:i:6 CC:Z:=CP:i:10536 HI:i:2

HWI-ST830:206:D2411ACXX:1:1114:6515:89952 433 chr1 10536 0 76M chr9 141135264 0 TACCACCGAAATCTGTGCAGAGGAGAACGCAGCTCCGCCCTCGCGGTGCTCTCCG

GGTCTGTGCTGAGGAGAACGC ##B<2DDDDDDDCCDCC@CC@C@282BBCCDDBDDFHIJJJIGJIIGIGFIGJJIJJJJJJJJHGGHHFFFFDCC@ XA:i:1 MD:Z:24C51 NM:i:1 XP:Z:chr9 141135264 76M NH:i:6 CC:Z:=CP:i:10536 HI:i:3

...

We’d like to be able to quickly determine the genes overlapped by a dna sequence.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 37 / 45

Dictionary Example (cont)

First, we need a simple way to determine if two intervals overlap.

intervaltree is a python module that makes that easy.

>>> from intervaltree import IntervalTree
>>> it=IntervalTree()
>>> it[4:7]=’I1’
>>> it[5:10]=’I2’
>>> it[1:11]=’I3’
>>> it
IntervalTree([Interval(1, 11, ’I3’), Interval(4, 7, ’I1’),

Interval(5, 10, ’I2’)])
>>> it[7]
set([Interval(1, 11, ’I3’), Interval(5, 10, ’I2’)])
>>> it[6:8]
set([Interval(4, 7, ’I1’), Interval(1, 11, ’I3’),

Interval(5, 10, ’I2’)])

We’ll use interval trees, one for each chromosome, to store an interval for each gene.

Then we’ll find the overlaps for mapped dna sequences.

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 38 / 45

Dictionary Example (calculating overlaps)

Here is a picture of what we want:

{’chr1’: IntervalTree([Interval(1000, 1100, ’GeneA’),
Interval(2000, 2100, ’GeneB’), ...

’chr2’: IntervalTree([Interval(4000, 5100, ’GeneC’),
Interval(7000, 8100, ’GeneD’), ...

’chr3’:
...
}

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 39 / 45

Dictionary Example (cont)

Again, in pseudocode:

create the interval trees
create empty dict
open the gene file
for each line in the file

get gene name, chrom, start, end
initialize an intervaltree for the chrom, if needed, and add to dict
add the interval and gene name to the interval tree

use the interval trees to find overlapped genes
open the dna sequence file
for each line in the file:
get chrom, mapped position, and dna seq
look up the interval tree for that chrom in the dict
search the interval tree for overlaps [pos, pos+len]
print out the gene names

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 40 / 45

Dictionary Example (cont)

import sys
from intervaltree import IntervalTree

print "initializing"
genefinder={}
for line in open(sys.argv[1]):

genename, chrm, strand, start, end = line.split()[0:5]
if not chrm in genefinder:

genefinder[chrm]=IntervalTree()
genefinder[chrm][int(start):int(end)]=genename

print "reading sequences"
for line in open(sys.argv[2]):

tag, flag, chrm, pos, mapq, cigar, rnext,
pnext, tlen, seq, qual = line.split()[0:11]

genes=genefinder[chrm][int(pos):int(pos)+len(seq)]
if genes:

print tag
for gene in genes:

print ’\t’,gene.data

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 41 / 45

Dictionary Example (cont)

rdb9@bdn:ruddle2:˜ $ python dict_example.py knownGene.txt hits.sam
initializing
reading sequences
HWI-ST0831:196:C1YCJACXX:2:2211:2571:23347

uc004cqm.3
uc010nda.3
uc004cqn.3

HWI-ST0831:196:C1YCJACXX:2:2114:9661:90395
uc003zbm.3

HWI-ST0831:196:C1YCJACXX:2:2302:16215:62515
uc003pvj.3
uc003pvh.3
uc010kdy.1

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 42 / 45

Python Resources we like

Introducing Python, Bill Lubanovic, O’Reilly

Python in a Nutshell, Alex Martelli, O’Reilly

Python Cookbook, Alex Martelli, O’Reilly

Google’s python class: https://www.youtube.com/watch?v=tKTZoB2Vjukxo

https://docs.python.org/2.7/tutorial

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 43 / 45

To get help or report problems

Check our status page:
http://research.computing.yale.edu/system-status

Send an email to: hpc@yale.edu

Read documentation at:
http://research.computing.yale.edu/hpc-support

Email us directly:

Stephen.weston@yale.edu, Office hours at CSSSI on Wednesday morning from
9 to 12 or by appointment
Robert.bjornson@yale.edu, By appointment

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 44 / 45

http://research.computing.yale.edu/system-status
hpc@yale.edu
http://research.computing.yale.edu/hpc-support

When reporting a problem

It is best to send problem reports to our tracking system: hpc@yale.edu

Please include, as applicable:

The cluster you’re working on

The directory you’re working in

The command you ran, and what happened, in as much detail as you can

See our intro to HPC bootcamp presentation:
http://research.computing.yale.edu/hpc-bootcamp

Stephen Weston, Robert Bjornson (Yale) Introduction to Python July 2016 45 / 45

