
Writing Efficient R Code

Stephen Weston

Yale Center for Research Computing

November 2, 2016

Resources

I’ll demonstrate some R scripts during this workshop which you can download at
the URL listed below.

I’ve also included some good resources for writing efficient R code.

Examples http://github.com/steveweston/efficient-R

R Book http://adv-r.had.co.nz

R Manuals http://cran.r-project.org/manuals.html

R Inferno http:

//www.burns-stat.com/documents/books/the-r-inferno

S. Weston (Yale) Writing Efficient R Code November 2, 2016 2 / 25

http://github.com/steveweston/efficient-R
http://adv-r.had.co.nz
http://cran.r-project.org/manuals.html
http://www.burns-stat.com/documents/books/the-r-inferno
http://www.burns-stat.com/documents/books/the-r-inferno

Is R slow?

R programs can be slow, but well written R programs are usually fast enough.

Speed was not the primary design criteria

Designed to make programming easier

Slow programs often a result of bad programming practises or not
understanding how R works

There are various options for calling C or C++ functions from R

The goal of this bootcamp is to help you write better R programs that are less
likely to require later optimization.

S. Weston (Yale) Writing Efficient R Code November 2, 2016 3 / 25

General R programming advice

If you don’t understand something in R, try some experiments

R has a number of quirks: learn about them

Download and browse the R source

Study well written R programs

Browse the R documentation

Break your code into functions when appropriate

Use functions to reduce the need for global variables

Write lots of tests for your functions

Learn how to make R packages

Use version control (such as git) to keep track of changes

S. Weston (Yale) Writing Efficient R Code November 2, 2016 4 / 25

Code tuning advice

Tuning code is tricky and not intuitive, so be methodical.

Profile your code and focus your efforts on problem areas

Run benchmarks to determine how differences effect performance

Don’t get carried away with micro-optimizations

Consider a better algorithm

Preallocate result vectors

Be careful to avoid duplication of large objects

Become familiar with R’s vector functions and “apply” functions

Learn different vector and matrix indexing techniques

Compile your R functions into byte code using cmpfun

Learn to use a parallel computing package

Consider specialized packages: data.table, bigmemory, plyr, RSQLite

If you know C, C++, or Fortran, learn to call it from R

Use monitoring tools such as top, Activity Monitor, etc

S. Weston (Yale) Writing Efficient R Code November 2, 2016 5 / 25

Are for loops in R slow?

Not all for loops are bad, but many of the most common mistakes involve for
loops. The classic mistake is not preallocating a result vector.

classic bad for loop
n <- 1000000

x <- NULL

for (i in 1:n) {

x[i] <- sqrt(i)

}

This example is a problem due to a combination of issues:

large number of iterations

tiny amount of computation per iteration

result vector is reallocated and copied on each iteration eventually triggering
garbage collection periodically

S. Weston (Yale) Writing Efficient R Code November 2, 2016 6 / 25

Preallocate result vectors

Preallocating the result vector avoids memory management problems.

preallocate x
n <- 1000000

x <- double(n)

for (i in 1:n) {

x[i] <- sqrt(i)

}

This is a great improvement over the previous example, but it’s still slow because
of the many tiny iterations. Fortunately we can replace the for loop with a vector
function:

x <- sqrt(1:n)

S. Weston (Yale) Writing Efficient R Code November 2, 2016 7 / 25

Profiling

Profiling helps you focus on the slow parts of your code thus saving you
programming time.

R has builtin support for profiling, but there are additional packages available:

proftools

profvis (RStudio support)

Basic profiling is quite easy:

Rprof(’prof.out’)

slowfunction(x, 1000)

Rprof(NULL)

print(summaryRprof(’prof.out’)

S. Weston (Yale) Writing Efficient R Code November 2, 2016 8 / 25

Benchmarking

Once you know what section of your code is slow via profiling, benchmarking tools
will help you to time your code.

more acurate than standard profiling tools

system.time is useful for long running code

the microbenchmark package is useful for analyzing short running code

I like to put code into a function

benchmark different versions of code for comparison

S. Weston (Yale) Writing Efficient R Code November 2, 2016 9 / 25

Benchmarking with the microbenchmark package

The microbenchmark package is particularly good for timing very short running
code.

library(microbenchmark)

res <- microbenchmark(

fun.for=fun.for(X),

fun.for.compiled=fun.for.compiled(X)

)

print(res)

plot(res)

library(ggplot2)

autoplot(b)

S. Weston (Yale) Writing Efficient R Code November 2, 2016 10 / 25

microbenchmark plot

S. Weston (Yale) Writing Efficient R Code November 2, 2016 11 / 25

microbenchmark autoplot

S. Weston (Yale) Writing Efficient R Code November 2, 2016 12 / 25

Use R byte code compiler

The cmpfun function from the standard compiler package can significantly
improve the performance of R functions. for loops in particular may run much
faster after compiling them.

fun.for <- function(x, seed=1423) {

set.seed(seed)

y <- double(length(x))

for (i in seq_along(x)) {

y[i] <- rnorm(1) * x[i]

}

y

}

library(compiler)

fun.for.compiled <- cmpfun(fun.for)

Note that byte code is not the same as machine code.

S. Weston (Yale) Writing Efficient R Code November 2, 2016 13 / 25

R vector functions
Vector functions are central to good R programming.

fast since implemented as a single C or Fortran function

concise and easy to read

nested calls to vector functions can often replace for loops

heavy use of vector functions can use a lot of memory

Useful vector functions include:

math operators: +, -, *, /, ^, %/%, %%

math functions: abs, sqrt, exp, log, log10, cos, sin, tan, sum, prod

logical operators: &, |, !

relational operators: ==, !=, <, >, <=, >=

string functions: nchar, tolower, toupper, grep, sub, gsub, strsplit

conditional function: ifelse (pure R code)

misc: which, which.min, which.max, pmax, pmin, is.na, any, all, rnorm, runif,
sprintf, rev, paste, as.integer, as.character

S. Weston (Yale) Writing Efficient R Code November 2, 2016 14 / 25

Vector indexing

Vectors can be used as indices to vectorize index operations.

x <- rnorm(10)

Extract subvector

x[3:6]

Extract elements using result of vector relational operation

x[x > 0]

Set NA’s to zero

x[is.na(x)] <- 0

S. Weston (Yale) Writing Efficient R Code November 2, 2016 15 / 25

Matrix indexing

Vectors and matrices can be used as indices to vectorize index operations.

m <- matrix(rnorm(100), 10, 10)

Extract submatrix (non-consecutive columns)

m[3:4, c(5,7,9)]

Extract arbitrary elements as vector

m[cbind(3:6, c(2,4,6,9))]

Extract elements using result of vector relational operation

m[m > 0]

Set NA’s to zero

m[is.na(m)] <- 0

S. Weston (Yale) Writing Efficient R Code November 2, 2016 16 / 25

Beware of object duplication

R uses pass by value semantics for function arguments. In general, this requires
making copies of objects, although R tries to avoid copying unless necessary.

you can pass a matrix to a function and not worry that it will be modified as
a side effect

if modifications are desired, function must return modified object

duplication takes time and memory

objects are sometimes duplicated when not strictly necessary, sometimes
causing serious performance problems

see section 1.1.2 of the “R Internals” manual for more information

for information on Luke Tierney’s work to implement reference counting to
reduce object duplication, see https://developer.r-project.org/Refcnt.html

S. Weston (Yale) Writing Efficient R Code November 2, 2016 17 / 25

Example of object duplication

The tracemem function reports when an object is duplicated which is very useful
for debugging performance problems.

In this example, object duplication is expected and helpful.

> x <- double(10)

> tracemem(x)

[1] "<0x7fd2eb256750>"

> y <- x

> y[1] <- 10

tracemem[0x7fd2eb256750 -> 0x7fd2eb1cbff0]:

> .Internal(inspect(x))

@7fd2eb256750 14 REALSXP g0c5 [NAM(2),TR] (len=10, tl=0) 0,0,0,0,0,...

> .Internal(inspect(y))

@7fd2eb1cbff0 14 REALSXP g0c5 [NAM(1),TR] (len=10, tl=0) 10,0,0,0,0,...

S. Weston (Yale) Writing Efficient R Code November 2, 2016 18 / 25

Example of unexpected object duplication

Passing a matrix to a non-primitive function such as nrow will set the NAMED
bit, causing it to be duplicated when next modified. This doesn’t seem helpful,
but is presumably necessary to insure that the object isn’t modified.

> m <- matrix(0, 3, 3)

> tracemem(m)

[1] "<0x7fc168d29df0>"

> m[1,1] <- 1

> nrow(m)

[1] 3

> m[1,1] <- 2

tracemem[0x7fc168d29df0 -> 0x7fc168d21f58]:

So be careful what you do with large objects that you modify in a for loop.

S. Weston (Yale) Writing Efficient R Code November 2, 2016 19 / 25

Simple parallel computing using mclapply
The standard parallel package includes a very useful function called mclapply.

mclapply is nearly a drop-in replacement for lapply
use the mc.cores argument to specify the number of workers to use
does not execute in parallel on Windows (depends on fork system call)
not generally safe to use in R GUIs (such as RStudio)

parallel randomForest example

library(parallel)

library(randomForest)

x <- matrix(runif(500), 100)

y <- gl(2, 50)

ntree <- 1000

cores <- detectCores()

vntree <- rep(ntree %/% cores, cores)

worker <- function(n) randomForest(x, y, ntree=n)

rf <- do.call(’combine’,

mclapply(vntree, worker, mc.cores=cores))

S. Weston (Yale) Writing Efficient R Code November 2, 2016 20 / 25

Split problem into smaller tasks

R makes it easy to read entire data sets in one operation, but reading it in parts
can be much more efficient.

Splitting the problem into smaller tasks is compatible with parallel computing
techniques

The foreach/iterators packages provide tools to split inputs into smaller pieces

Use Linux commands (split, awk, etc) to preprocess data files by splitting
data files and removing unneeded fields

S. Weston (Yale) Writing Efficient R Code November 2, 2016 21 / 25

Beware of read.table

The read.table function is commonly used for reading data files, but it can be very
slow on large files.

Use of the colClasses argument can improve performance

colClasses can be used to skip a column, using less memory

It can be faster to read a file in smaller chunks using the nrows argument

The scan function can be faster

Consider using similar functions from different packages, such as data.table,
sqldf, and bigmemory

S. Weston (Yale) Writing Efficient R Code November 2, 2016 22 / 25

bigmemory package

The bigmemory package defines new matrix objects that are mutable, allowing
memory to be used more efficiently since the matrices are never automatically
duplicated.

Written by Mike Kane and Jay Emerson of Yale University

Works very well in conjunction with parallel computing

big.matrix – can use a backing file that is memory mapped

package biganalytics – apply, biglm, bigglm, bigkmeans, colmax

package bigtabulate – bigsplit, bigtabulate, bigtable, bigtsummary

package synchronicity – boost.mutex, lock, unlock

S. Weston (Yale) Writing Efficient R Code November 2, 2016 23 / 25

Save data in binary format

Saving data in a binary format can make it much faster to read the data later.
There are a variety of functions available to do that:

save/load

writeBin/readBin

write.big.matrix/read.big.matrix (from the bigmemory package)

S. Weston (Yale) Writing Efficient R Code November 2, 2016 24 / 25

SQLite

Consider putting data into an SQLite database.

RSQLite packages is easy to use

Easy to get subsets of the data into a data frame

Command line tool very useful for experimenting with queries

Database can be accessed from many different languages

The sqldf package may be useful, also

Can be quite slow

S. Weston (Yale) Writing Efficient R Code November 2, 2016 25 / 25

